Feature extraction for CBIR and Biometrics applications

نویسنده

  • RYSZARD S. CHORAS
چکیده

Abstract: In CBIR (Content-Based Image Retrieval), visual features such as shape, color and texture are extracted to characterize images. Each of the features is represented using one or more feature descriptors. During the retrieval, features and descriptors of the query are compared to those of the images in the database in order to rank each indexed image according to its distance to the query. In biometrics systems images used as patterns (e.g. fingerprint, iris, hand etc.) are also represented by feature vectors. The candidates patterns are then retrieved from database by comparing the distance of their feature vectors. The feature extraction methods for this applications are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Feature Extraction Techniques and Their Applications for CBIR and Biometrics Systems

In CBIR (Content-Based Image Retrieval), visual features such as shape, color and texture are extracted to characterize images. Each of the features is represented using one or more feature descriptors. During the retrieval, features and descriptors of the query are compared to those of the images in the database in order to rank each indexed image according to its distance to the query. In bio...

متن کامل

A Fast Localization and Feature Extraction Method Based on Wavelet Transform in Iris Recognition

With an increasing emphasis on security, automated personal identification based on biometrics has been receiving extensive attention. Iris recognition, as an emerging biometric recognition approach, is becoming a very active topic in both research and practical applications. In general, a typical iris recognition system includes iris imaging, iris liveness detection, and recognition. This rese...

متن کامل

CBIR on Biometric Application using Hough Transform with DCD ,DWT Features and SVM Classification

Content based image retrieval (CBIR) has been possibly the greatest significant enquiry areas in computer science for the last decade. A retrieval way which mix texture, color and shape feature is future in this paper. In this research, implemented a novel method for CBIR using Hough Transform ,DCD and DWT feature with Support vector machine (SVM) as a classifier. In the process of feature extr...

متن کامل

A Novel Method for Content Base Image Retrieval Using Combination of Local and Global Features

Content-based image retrieval (CBIR) has been an active research topic in the last decade. In this paper we proposed an image retrieval method using global and local features. Firstly, for local features extraction, SURF algorithm produces a set of interest points for each image and a set of 64-dimensional descriptors for each interest points and then to use Bag of Visual Words model, a cluster...

متن کامل

Pattern Recognition Algorithms for Ear Biometrics

In this article we present geometrical Parameter algorithms for ear Biometrics by representing the Ear image as contours, feature extraction and recognition. The proposed algorithms were developed for ear biometrics, but they can be applied in other contour image processing applications. Firstly we present mathematical and algorithmic foundations of geometrical feature extraction methods. We al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007